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ABSTRACT

This paper deals with cellular d-graph automata in which

each node has internal memory proportional to log~_1N where

N is the number of nodes in the underlying graph G. It is

shown how such an automaton can assign unique labels to the

nodes of G in O(log~_1N) time. Such an automaton can also

count the number of nodes and edges in G in O(log~_1N) time.

Algorithms for identifying all the cut nodes and all bridges

in G, each in O(log~_1N) time, are also presented.
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1. Introduction

Informally, a cellular d—graph automaton [1] is a graph

of bounded degree with a finite-state automaton at each node.

Many results on the graph recognition capabilities of such

automata were established in [11. This paper investigates an

extended class of these automata in which the processor at

each node has an amount of memory which is allowed to grow

with the logarithm of the number of nodes.

We first review some of the basic concepts introduced in

[1]. A d-graph is a graph with bounded degree d. A cellular

d-graph automaton ~i is a triple (G,M IP H) where G is a d-graph

(P,A,f,g) defined on the label set A=(l ,2,... ) .

P is the set of nodes in G.

A~PxP is a symmetric relation on P called the set of edges

f:P-’~A is a mapping called the labeling of the nodes of G.

g:A+Z where Z={l,2,...,d} is a labeling of the edges of G.

M is a finite state automaton (Q,ô) where ó is a transition

from QxZtxQt into Q in the deterministic case; Z{l ,2,. ..,d};

t~.d is the degree of a node in G.

El is a mapping from P into zd. The image H(n)=(il,i2,...,id ) €

(ZU{#}) is called the neighbor vector of a node n. If

n has degree ts.d then =

Q is a finite set of states such that As.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I J ~~~~ ~~~~~~ ntfl gE .tflI Ar~c _ l f l~~~~~~~~~ fl .  •-—— .4
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Informally there is an automaton M at each node n of G

and the input state of the automaton at node n is f(n)€A .

At each time step, each M senses the states of its neighbors,

reads its neighbor vector and changes its own state accord-

ing to the transition function 5. The neighbor vector tells

each node which neighbor of each of its neighbors it is.

A cellular d-graph acceptor is a cellular d—graph automaton

M=(G,M,H) with a distinguished node D such that M is a finite

state acceptor (A,Q,tS,F), where A (or Q1) is the set of input

states, (Q,6) is a finite state automaton and F~Q is a set of

final states.

An initial configuration is a mapping P.A. A terminal

configuration is a mapping c:P-~Q such that if n is the distin-

guished node D then c(n)EF.

i.i=(G ,M,H) accepts the d—graph G=(P,A ,f,g) if there is a

finite sequence of configurations cOl cl~
...cm such that c0

is an initial configuration, Cm is a terminal configuration and

c1S-c1+l for 0~i<m. -

A cellular d-graph automaton with augmented memory is a

graph G as above with each automaton M at each node of G

having O(log N) memory, where N is the number of nodes in G.

This amount of memory is sufficient to store numbers as large - •

as N.

_ _  — - — —--~~~~~~~~~~~~ --—~~~~-~~~~~~~~~~~~ -— 
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2. Labeling and counting

2.1 Numbering the nodes of the graph

• Let G be a d-graph automaton with bounded degree d and

let t be its minimum degree.

Lenm~a 2.1: The height of a breadth-first spanning tree T of

• G is bounded by log~_1N~ where N is the number of nodes in G.

Proof: Such a tree is built by starting at the root node CD)

and expanding all the nodes reachable by one edge from D.

There are at least t such nodes. In parallel each of these

nodes expands all its direct descendant nodes; ties are broken

arbitrarily. At this and subsequent steps, each node has one

ancestor and at least t—l sons. The process terminates when

it reaches leaf nodes, i.e., no more nodes can be expanded.

• Denote the number of expansion levels in G by h. Then

N 1+t+t(t—1) + t(t—1)2+ . . .  + t (t— l )~~~~ =

= 1 + 
( t - ) —  .

~~ 
• for t�3

Solving for h we get h=log~_1[l+ (N~l) (l_ ~)]<1og~_1N

For t d , log~ _ 1N is an approximate lowest value of h. In

subsequent analysis we will assume t=d . 3
Consequence: It takes at most 2 log~ _ 1N steps for a signal j

- - 
• . starting at one node in G to reach any other node in G. This

is a tight estimate if GET and one leaf node of T sends a

signal to another leaf node on the opposite side of T.
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Algorithm 2.1: Parallel numbering of the nodes in the graph.

(a) Construct a breadth-first spanning tree T of G.

(b) Store at each node the number of nodes in the subtree

rooted at it. This procedure starts at the leaf nodes of T:

each of them passes 1 to its ancestor. At the next time step

each ancestor node accumulates the numbers received from all

its sons, adds 1 (counts itself), stores the result in its

internal memory and sends it up to its own ancestor. This

process continues for log d_1N time steps. By then D (the

root of T) has gotten the total number of nodes in the graph.

Cc) The labeling procedure is based on preorder tree tra-

versal. Initially D is given the labels [l ,NJ . D labels it-

self with 1 and passes the labels (2,NJ to its descendants

as follows: Suppose the numbers of nodes in the sub-

trees rooted at Xll . . .~~
X

d 
are Then x1 is given the

labels [2,n1+l), x2 is given the labels

and Xd is given the labels (N—nd+l,NJ . Each x1 labels itself

with the first label in its interval and divides the remaining

interval of labels among its song. This process is repeated

recursively until it terminates at the leaf nodes of T.

Claim 2.1: Algorithm 2.1 labels the nodes of G in O(log~_1N).

Proof: Constructing a breadth-first spanning tree takes

O(log~_1N) in parallel. Finding -the number of sons at each

node is done in parallel in O(logd_lN) time as stated previously. 

~~~~~~— -~~~~~~ --—. —~ • - •- - . - •—-——— - —— - -
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According to Lemma 2.1 the height (depth) of the tree T is

- 
o(log~..1N)i so that it takes a total of 

O(log~_1N) to construct

the labeling. 
• 

-~

Both steps (b) and Cc) in Algorithm 2.1 need O(log N) memory

at each node.
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2.2. Counting the edges and nodes in the graph

• Algorithm 2.2: Edge counting

(a) Construct a breadth-first spanning tree T of G where

each node marks its ancestor .

(b) The automaton at every node of T counts the number

of edge emanating from n.

(c) Each leaf node of T passes its value up to its an-

cestor. Each such ancestor sums up all the values entering

it and passes them up to its own ancestor. This process con-

tinues until D, the root of T, receives the sum of the tn values.

(d) D outputs half of this sum.

Claim 2.2: Algorithm 2.2 outputs the number of edges of G after

at most O(log~,.1N) time.

Proof: Constructing a breadth—first spanning tree in parallel

takes O(log~~1N) time. As in Lemma 2.1 the depth of T is at

most logd l N. Therefore this is the time needed for the

values to be summed at D. Algorithm 2.2 counts every edge of

G twice: once for each of its endpoint nodes. Therefore D

outputs half of the sum computed by it. Since there are at most

edges in a d-graph, each node needs no more than O(log2N)

memory.

The procedure for labeling the nodes in G (Algorithm 2.1)

also defines a labeling of the edges, since each edge is

uniquely defined by the labels of its two endpoint nodes.

• - • •- ~~~ ~~~~~~~ ~~~~~~~~~~~~ -- .1—



Algorithm 2.3: Node counting

• (a) Construct a breadth-first spanning tree T of G.

(b) Each leaf node of T passes up the number 1 to its

ancestor. Each ancestor addes 1 to the sum of the numbers

it gets from all its sons and passes it up to its ancestor.

This procedure continues in parallel for log~_1N time steps

until D receives the numbers from all its sons.
I

Cc) D outputs the number of nodes in T (or G).

Claim 2.3: Algorithm 2.3 counts the nodes in G in O(log~~1N)

time.

Proof: Each node in P (or C) contributes 1 to the sum accumu-

Lated at D. According to Lemma 2.1, it takes O(log~_1N) time

for all the numbers to accumulate at D.

(l~ also presented an algorithm for counting the number of

nodes in C by passing up one bit for each node up in T and

outputting the string of bits out of D. That scheme does not

need augmented memory but avoids doing the summing in T. —

Counting the number of edges can be done in a similar way.

I
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3. Cut nodes and bridges

3.1 Cut nodes 
-

Let G be a d-graph labeled by Algorithm 2.1. Let T

be the breadth-first spanning tree of G and D its root node. - -

Lemma 3.1.1: A leaf node of T cannot be a cut node of G.

Proof: Suppose X is a leaf node of P and a cut node of G. Then

removing X would separate G into two connected components. D

is in one of them (see Figure 1). Thus when we construct P

starting at D, X must be expanded prior to any node in the

component which does not include D. This contradicts the fact

that X is a leaf node.

Consequence: There is no need to check leaf nodes for being

cut nodes.

• The cut node detection algorithm is based on the following

steps:

Step (1): Label the nodes of P in a preorder traversal much

like that in Algorithm 2.1 except that this time each node n

is labeled with a pair of n~xrbers [t,m ;  I is the lowest label

given by Algorithm 2.1 to the subtree rooted at n and in is the

highest label given to that subtree. Clearly the leaf nodes of

T get labels of the form (1,1].

Step (2): Upon being labeled each leaf node sends its own

label to all its neighbors. Every ancestor of a leaf node

accepts those labels coming from all its sons, calculates a new

_ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~ •~~~~•~~~•~~~~~~~~ •.• • ~~~~~~~~~~
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pair [I,rn] and sends it to all its neighbors at the next time

step. In general every node in G is doing the same whenever

it gets pairs of numbers coming from all or part of its neigh-

bors except its father in P. The calculation of the pair [~~,m]

at each node is done as follows: Suppose node n in P is

labeled 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

from its d—l neighbors

(not including its father in T) .  Then n computes

and rn=max {m ,mls m2 , . . . md....l } and sends the

pair [t ,inl to all its neighbors. Upon acceptance of the pairs

• (I,rnJ every node (except the leaf nodes of T) compares the pairs

received from each of its sons in P to its own stored label

• (I, mJ and also to the label of that son in T , by sensing that

label. This comparison , described in Lemma 3.1.2 , g ives each

node an indication of whether it is a cut node based on the

current information at the node. The above process of sending

pairs ( the signaling process) continues for loge 1N time since

this is the maximum time needed for the root node D of T to be

influenced by the signals coming from the leaves of P. By then

each node is capable of deciding whether it is a cut node by

consecutive examination of the labels entering it from its sons

in T. Leaf nodes of T do not make the comparisons of the

• following Lemma 3.1.2 since they are not candidates for being

cut nodes by Lemma 3.1.1. However, they do participate in the

signaling process.

- •- --—-—-—- ~~~~~~~~~ - - • - • • - - • -- .- • ~~~-~~~~-
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Lemma 3.1.2: A node n in a d-graph G is a cut node if and ~nly

if one of the following conditions holds:

1) No label received by n during step (2) from any of its

direct descendants in T is outside the range defined by the

label [t,m] of n. In this case removal of n will separate the

- 
subtree rooted at n from the rest of G.

2) The labels received from at least one of n’s direct

descendants in P , during step ( 2 ) ,  are within the range of the

label [t,m] of that descendant. In this case if n is removed ,

the subtree rooted at that descendant will be disconnected from

the rest of G.

Both conditions 1) and 2) can be satisfied at a node n.

In that case G is divided into more than two connected components

upon removal of n.

Proof: (1) Let [t ,mJ denote the label of the node n.

i f :  During the signaling process if n does not get from its

sons any pair of labels which is outside the range [L,m~, then

n is not connected, via its descendants in T, to any node of G

outside its subtree and thus is a cut node.

only if: If node n ’ having subtree Sl (Figure 2) is not a cut

node , i.e., is connected in G to node n~ outside the subtree S

of n, then the signaling process would cause node n* to send

its [t(n*),m (n*)) pair to node n’. This pair is outside

the range of labels for Si, due to the preorder labeling OL

step (1). Therefore one of these pair elements will become

_ _ _ _ _ _ _ _ _ _ _ _  _ _  ~~~~ 
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1(n ’) or rn(n’) of the pair to be conveyed to n by the signal-
• • 

- 
• ing process. Thus n will receive a label outside the range

of its own label (I , mJ contradicting condition ( 1) of the lemma .

The condition of comparing only pairs received from direct - -

descendants is necessary since if n also compares pairs coming

from directly connected non-sons it might conclude incorrectly

that it is not a cut node . Note that nodes connected directly

to n which are not its direct sons in T will always send it

pairs whose ranges do not overlap (I,m J . -
•

(2 )  i f :  Suppose the pair (t, rn ] received by n from Si

• (Figure 2) in G is within the range [ t( n ) ,m ( n ) ] .  This means

that Si is not connected to the other nodes of G except via

n because of the preorder labeling of P. Thus n is a cut node

with respect to Si in G.

only if: If n is not a cut node with respect to Si (Figure 2),

then Si is connected to S2 or S3 or the rest of G and thus

during the signaling process will convey to n a pair [t , rn]

• which is outside the range 1e, m] stored at n ’ in violation of

condition (2).

Algorithm 3.1.1: Finding cutnodes of C

(a) Construct a breadth—first spanning tree P of G. ~•

Cb ) Use step (1) to label all the nodes of G.

(C)  Apply steps (2)  during which each node of

G decides whether it is a cut node according to case ( 1) or

case (2 )  of Lemma 3.1.2.

-
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Claim 3.1.1: Algorithm 3.1.1 finds all the cut nodes in G in

time O(log~...1N) and with O(log N) storage per node.

Proof: Time: Steps (a) and (b) take O(log~_1N) time. Step (c)

needs log~.1N time for the propagation of signals. Constant

time is spent for comparisons at the nodes.

Memory: The amount needed at each node for storing the labels

1t ,m] and [t ,rn ] is 4iog N.
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-‘ 3.2 Bridges

Let G be a d-graph labeled by Algorithm 2.1 and T be its

• breadth-first spanning tree .

Lemma 3.2.1: Every bridge of G is in P.

t Proof: Let x be a bridge of C and S the set of edges of T.

if x~S then removing x from G will not disconnect it and thus

x is not a bridge of G.

The bridge detection algorithm is based on the following

steps :

Step 1: The same as step (1) of Section 3.1.

• Step 2: The signaling process here is much the same as that

in Section 3.1 except that the comparison procedure is done

bewteen all the pairs entering a node n and the label [i,ml of

that node . No direct comparison is done with the labels of

n ’s sons. The signaling process of sending [~ ,rnI out of each

node is the same as in Section 3.1.

Lemma 3.2.2: A bridge x connecting a node n to its direct

ancestor in P is a bridge of G if and only if the following :

condition holds: No label received by n through any of its edges,

except x, is outside its own stored label [t,mJ .

• L 
Proof: Similar to case (1) of Lemma 3.1.2. Clearly if labels

J~~ 

are allowed to enter n via x, then n will always receive labels

outside its own label range and will conclude that x is not

a bridge even if x is the only edge connecting n and its

subtree to the rest of G. 

•-!-s---- - - 
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~~~oritbm 3.2.2: Finding bridges of G

(a) Construct a breadth—first spanning tree T of G.

(b) Use step (1) to label the nodes of T.

(c) Apply steps (2) during which each node n of T decides,

according to Lemma 3.2.2, whether the edge connecting it to

its ancestor in T is a bridge.

Claim 3.2.2: Algorithm 3.2.2 finds all the bridges in G in

O(log~..1N) time and O(log N) memory per node.

Proof: Time: Steps (a) and (b) take O(log~...1N) time each.

Step (C) needs log~_1N time for the propagation of labels.

The computation at the nodes takes constant time.

Memory: Each node needs 4log N to store its own label

and (I,m].

______ -~~~~ -— -— 
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